CHEMICAL REACTION AND EQUATION

TOPICS TO BE COVERED :-

- **1.** Introduction
- Chemical Equations
 To make equations more informative
 Types of chemical reaction

1. Physical change

2. Chemical change

CHEMICAL REACTION

The process in which new substances with new properties are formed.

Chemical Rxⁿ has two parts :-

- **1. <u>REACTANTS</u> :-** The substances which take part in a chemical reaction is known as reactant.
- 2. <u>PRODUCTS</u> :- The new substances produced as a result of chemical reaction is known as product.

PRODUCT

Example :- Magnesium burns in presence of oxygen. $2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$

REACTANTS

Characteristics of chemical rxⁿ are :-

i. Evolution of a gas. $Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$ ii. Formation of a precipitate. $Pb(NO_3) + KI \longrightarrow PbI_2$ (Yellow ppt) + KNO_3 iii. Change in colour $Fe + CuSO_4 \longrightarrow FeSO_4 + Cu$ (Blue) (Pale green) iv. Change in temperature $CaO + H_2O \longrightarrow Ca(OH)_2 + Heat Energy released$ v. Change in state $HCl(g) + NH_3(g) \longrightarrow NH_3Cl(s) + H_2(g)$

PRECIPITATION REACTION

POTASSIUM IODIDE + LEAD NITRATE

1005

Why should a magnesium ribbon be cleaned before it is burn in air?

Ans :- To remove the layer of magnesium oxide or magnesium carbonate which is form in magnesium ribbon. It is removed by using sand paper.

NOTE :- Magnesium ribbon burns with a dazzling white flame and changes into a white powder. This powder is magnesium oxide.

CHEMICAL EQUATIONS

The method of representing a chemical reaction with the help symbol or formula of a substance involved in it is known as chemical equation . OR, The method of representing chemical reaction is know as chemical equation.

Balanced Eqⁿ :-Those chemical equation in which the number of atoms or masses of different element in the reactant and product are equal. Example :- $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ $3Fe(s) + 4H_2O(g) \rightarrow Fe_3O_4(s) + 4H_2(g)$

Unbalanced Eqn: Those chemical equation in which the number of atoms or masses of different element in the reactant and product are not equal.

```
Example :- Mg + O_2 \rightarrow MgO
                  Fe (s) + H<sub>2</sub>O (g) \rightarrow Fe<sub>3</sub>O<sub>4</sub> (s) + 4H<sub>2</sub> (g)
```


This is also know as skeletal chemical reaction.

Why do we need to balanced a chemical equation ?

Ans:-

To satisfy the law of "conservation of mass" which state that "mass can neither be created nor be destroyed in a chemical reaction.

Balancing of a Chemical Equation

The process of making the number of different types of atoms equal on both sides (reactant and product) of an equation is known as balancing of equation.

Example : - Fe + $H_2O \longrightarrow Fe_3O_4 + H_2$

During balancing, we can't change the formula. Only we put coefficient in front of the formula.

List number of atoms of different elements.

Elements	No. of atoms (in reactant)	No. of atoms (in product)
Fe		
н		
0		

This method of balancing a chemical equation is known as hit and trial method.

Q U E S T I O N S

- 1. Why should a magnesium ribbon be cleaned before burning in air?
- 2. Write the balanced equation for the following chemical reactions.
 - (i) Hydrogen + Chlorine \rightarrow Hydrogen chloride
 - (ii) Barium chloride + Aluminium sulphate \rightarrow Barium sulphate +

Aluminium chloride

- (iii) Sodium + Water \rightarrow Sodium hydroxide + Hydrogen
- 3. Write a balanced chemical equation with state symbols for the following reactions.
 - (i) Solutions of barium chloride and sodium sulphate in water react to give insoluble barium sulphate and the solution of sodium chloride.
 - (ii) Sodium hydroxide solution (in water) reacts with hydrochloric acid solution (in water) to produce sodium chloride solution and water.

Balance the following chemical equations.

- (a) $HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + H_2O$
- (b) NaOH + $H_2SO_4 \rightarrow Na_2SO_4 + H_2O$
- (c) NaCl + AgNO₃ \rightarrow AgCl + NaNO₃
- (d) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + HCl$

Write the balanced chemical equations for the following reactions.

- (a) Calcium hydroxide + Carbon dioxide \rightarrow Calcium carbonate + Water
- (b) Zinc + Silver nitrate \rightarrow Zinc nitrate + Silver
- (c) Aluminium + Copper chloride \rightarrow Aluminium chloride + Copper
- (d) Barium chloride + Potassium sulphate \rightarrow Barium sulphate + Potassium chloride

TO MAKE EQUATIONS MORE INFORMATIVE

01. By indicating "the physical state"

The symbol used to indicate solid (s), liquid (l), gaseous (g) aqueous solution (aq). Example :- Zn(s) + $H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$

Precipitate is also represented by solid(S). It is written as ppt. Example :- $Ca(OH)_2(aq) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(I)$ (lime water) (carbon (white ppt.) (water) dioxide)

02. By indicating "Heat change"

On the basis of heat change,

Chemical reactions are two types :- i) Endothermic reaction

ii) Exothermic reaction

Endothermic reaction :-

The reaction in which heat is required.

Example :- N_2 (g) + O_2 (g) + heat $\rightarrow 2NO(g)$ H₂O <u>electricity</u> H₂ + O_2

Photosynthesis, electrolysis and all decomposition reaction are example of endothermic reaction.

Note :- The energy required may be in form of heat, light or electricity.

Exothermic reaction :-

The reaction in which heat is released. Example :- C (s) + O_2 (g) $\rightarrow CO_2$ (g) + Heat

Respiration is an example of exothermic reaction.

Note :- Heat change may be indicate by heat or heat energy or just energy.

The release of energy during cellular respiration

$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$$

03. By indicating "condition"

Condition as temperature, pressure, catalyst, etc at which reaction take place.

Photosynthesis:-

$$\begin{array}{c} 6 \text{ CO}_2 \\ \text{Carbon Dioxide} \end{array} + \begin{array}{c} 6 \text{ H}_2 \text{O} \\ \text{Water} \end{array} \xrightarrow[Chlorophyll]{} \begin{array}{c} Sunlight \\ \hline Chlorophyll \end{array} \xrightarrow[Carbohydrate]{} \begin{array}{c} C_6 \text{H}_{12} \text{O}_6 \\ \text{Carbohydrate} \end{array} + \begin{array}{c} 6 \text{ O}_2 \\ \text{Oxygen} \end{array}$$

$$CO(g) + 2H_2(g) \xrightarrow{300 \text{ atm: } 300^{\circ}C} CH_3OH(I)$$

atm :- atmospheric pressure ZnO + CrO_3 :- Zinc Oxide and chromium oxide

TYPE OF CHEMICAL REACTION

Some of the important chemical reactions are :-

- 1. Combination reaction.
- 2. Decomposition reaction.
- 3. Displacement reaction.
- 4. Double displacement reaction.
- 5. Oxidation and reduction (or redox) reaction.

01. Combination reaction

Definition:-

Those reaction in which two or more substances combine to form a single substance, are called combination reaction.

$A + B \rightarrow AB$

Example :- $2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$ $2H_2(g) + O_2(g) \longrightarrow 2H_2O(l)$ $CaO(s) + H_2O(l) \longrightarrow Ca(OH)_2(aq)$ $NH_3(g) + HCl(g) \longrightarrow NH_4Cl(s)$

A solution of slaked lime {Ca(OH)₂} is used for whitewashing walls which slowly react with carbon dioxide to form calcium carbonate {CaCO₃} that gives shiny finish to the walls. It takes 2-3 days to form. Ca(OH)₂(aq) + CO₃(g) \rightarrow CaCO₃(s) + H₂O(l)

02. Decomposition reaction

$2H_2O \rightarrow 2H_2 + O_2$

NaCl $_$ electricity \rightarrow Na (s) + Cl (g)

$$\begin{array}{ccc} CaCO_{3}(s) & \xrightarrow{\text{Heat}} & CaO(s) & + & CO_{2}(g) \\ (Limestone) & & (Quick lime) \end{array}$$

It is example of thermal decomposition.

 $2AgCl(s) \xrightarrow{Sunlight} 2Ag(s) + Cl_2(g)$

Silver bromide also behaves in the same way.

 $2AgBr(s) \xrightarrow{Sunlight} 2Ag(s) + Br_2(g)$

We have seen that the decomposition reactions require energy either in the form of heat, light or electricity for breaking down the reactants.

Q U E S T I O N S

- 1. A solution of a substance 'X' is used for whitewashing.
 - (i) Name the substance 'X' and write its formula.
 - (ii) Write the reaction of the substance 'X' named in (i) above with water.
- 2. Why is the amount of gas collected in one of the test tubes in Activity 1.7 double of the amount collected in the other? Name this gas.

03. Displacement reaction

Those reaction in which one element takes the place of another element in a compound are know as displacement reaction.

 $A + BX \rightarrow AX + B$

A more reactive element displace less reactive element. Therefore A should be more reactive then B

Figure 10.2 Displacement of copper

Practice Questions 1. Fe + CuSO₄ \rightarrow 2. $Zn + 2HCI \rightarrow$ 3. Na + ZnSO₄ \rightarrow 4. Pb + CuCl₂ \rightarrow 5. Mg + FeSO₄ \rightarrow 6. Al + AgNO₃ \rightarrow 7. Mg + Zn(NO₃)₂ \rightarrow 8. 2Na + H₂SO₄ \rightarrow 9. Ag + NaCl

10. $3Ca + Al_2O_3 \rightarrow$

Reactivity Series of Metal

Potassium Sodium Calcium Magnesium Aluminium Zinc Iron Tin Lead Copper Silver Gold

Less Reactive

04. Double displacement reaction

Definition:-

Those reaction in which two compounds react by an exchange of ions to form two new compounds are know as d0uble displacement reaction.

$AX + BY \rightarrow AY + BX$

Exchange of ions takes place in double displacement reaction. A double displacement reaction usually occurs in salt solution and one of the products, being insoluble, precipitate out.

Example :- $BaCl_2 + (NH_4)_2SO_4 \longrightarrow BaSO_4 \downarrow + 2NH_4Cl$

Barium Ammonium chloride sulphate Barium sulphate (White ppt) Ammonium

Precipitation reaction: Any reaction in which an insoluble solid (called precipitate) is formed that separates from the solution is called a precipitation reaction

Practice Questions

- 1. $Na_2SO_4 + BaCl_2 \rightarrow$
- 2. AgNO₃ + NaCl \rightarrow
- 3. $Pb(NO_3)_2 + KI \rightarrow$
- 4. $Na_2CO_3 + CaCl_2 \rightarrow$
- 5. $K_2SO_4 + Ba(NO_3)_2 \rightarrow$
- 6. HCI + NaOH \rightarrow
- 7. $AI_2(SO_4)_3 + Ca(OH)_2 \rightarrow$
- 8. FeSO₄ + NaOH \rightarrow
- 9. $ZnSO_4 + BaCl_2 \rightarrow$
- 10. $CuSO_4 + NaOH \rightarrow$

05. Oxidation and reduction reaction

Oxidation:-

The addition of oxygen to a substance and removal of hydrogen from a substance is known as oxidation .

Reduction:-

The addition of hydrogen to a substance and removal of oxygen from a substance is known as reduction .

- Oxidation and reduction is also known as redox reaction. Red \rightarrow Reduction + ox \rightarrow oxidation

Oxidising agent :- The substance which gives oxygen for oxidation and removes hydrogen is called oxidising agent.

Reducing agent :- The substance which gives hydrogen for reduction or removes oxygen is called reducing agent.

Removal of O₂ [reduction]

$$CuO + H_2 \rightarrow Cu + H_2O$$

Addition of O₂ [oxidation]

Oxidation:- H₂ Oxidising agent:- CuO Reduction:- CuO Reducing agent:- H₂

$ZnO + C \rightarrow Zn + CO$

Oxidation:- Oxidising agent:-Reduction:- Reducing agent:- $MnO_2 + 4HCI \rightarrow MnCl_2 + 2H_2O + Cl_2$

Oxidation:-Reduction:- Oxidising agent:-Reducing agent:-

Conclusion :-

- 1. The substance which gets oxidised is the reducing agent
- 2. The substance which gets reduced is the reducing agent.

► Definition:

Rancidity is the condition produced by the **oxidation of fats and oils** in food, leading to a **bad taste and smell**.

► Cause:

•Exposure to air (oxygen).

•Sometimes exposure to light or moisture also accelerates rancidity.

► Prevention Methods:

1.Storing food in airtight containers – reduces exposure to oxygen.

2.Refrigeration – slows down the oxidation process.

3.Adding antioxidants – like BHA or BHT which prevent oxidation.

4.Vacuum packing – removes oxygen from the packaging.

5.Storing in dark bottles – prevents light-induced oxidation.

Example:

•Chips are often packed with **nitrogen gas** to prevent rancidity.

► Definition:

Corrosion is the process where **metals deteriorate** when exposed to **moist air or water**, forming unwanted compounds like **rust**.

Examples:

•Iron \rightarrow forms rust (Fe₂O₃·xH₂O) when exposed to air and moisture.

•Silver \rightarrow turns black due to the formation of silver sulfide.

-Copper \rightarrow forms a green coating of basic copper carbonate

► Prevention Methods:

1.Painting or coating with oil/grease – prevents contact with air and moisture.

2.Galvanization – coating iron with a layer of zinc.

3.Alloying – mixing metal with other metals to resist corrosion (e.g., stainless steel).

4.Electroplating – coating with a less reactive metal.

5.Sacrificial protection – using a more reactive metal (like zinc) to corrode in place of iron.